Устойчивость (динамические системы)

Устойчивость динамических систем:

Пусть Ω — область пространства \mathbb{R}^n, содержащая начало координат, I = [\tau; \infty], где \tau \in \mathbb{R}^n. Рассмотрим систему (1) вида:

\dot x = f(t, x), x \in \mathbb{R}^n, f: I \times \Omega \to \mathbb{R}^n, f(t, 0) = 0

При любых (t_0, x_0) \in I \times \Omega существует единственное решение x(t, t0, x0) системы (1), удовлетворящее начальным условиям x(t0, t0, x0) = x0. Будем предполагать, что решение x(t, t0, x0) определено на интервале J^+ = [t_0; \infty), причём J^+ \subset I.

Содержание

Устойчивость по Ляпунову

Тривиальное решение x = 0 системы (1) называется устойчивым по Ляпунову, если для любых t_0 \in I и ε > 0 существует δ > 0, зависящее только от ε и t0 и не зависящее от t, такое, что для всякого x0, для которого \|x_0\| < \delta, решение x системы с начальными условиями x(t0) = x0 продолжается на всю полуось t > t0 и удовлетворяет неравенству \|x(t)\| < \epsilon.

Символически это записывается так:

(\forall \epsilon > 0)(\forall t_0 \in I)(\exists \delta(t_0, \epsilon) > 0)(\forall x_0 \in B_{\delta(t_0, \epsilon)})(\forall t \ge t_0, t \in J^+) \Rightarrow (\|x(t, t_0, x_0)\| < \epsilon)

Равномерная устойчивость по Ляпунову

Тривиальное решение x = 0 системы (1) называется равномерно устойчивым по Ляпунову, если δ из предыдущего определения зависит только от ε:

(\forall \epsilon > 0)(\forall t_0 \in I)(\exists \delta(\epsilon) > 0)(\forall x_0 \in B_{\delta(\epsilon)})(\forall t \ge t_0, t \in J^+) \Rightarrow (\|x(t, t_0, x_0)\| < \epsilon)

Неустойчивость по Ляпунову

Тривиальное решение x = 0 системы (1) называется неустойчивым по Ляпунову, если:

(\exists \epsilon > 0)(\exists t_0 \in I)(\forall \delta > 0)(\exists x_0 \in B_\delta)(\exists t_* \ge t_0, t_* \in J^+) \Rightarrow (\|x(t_*, t_0, x_0)\| \ge \epsilon)

Асимптотическая устойчивость

Тривиальное решение x = 0 системы (1) называется асимптотически устойчивым, если оно устойчиво по Ляпунову и выполняется условие \lim_{t \to \infty} x(t, t_0, x_0) = 0 для всякого x с начальным условием x0, лежащим в достаточно малой окрестности нуля.

Эквиасимптотическая устойчивость

Тривиальное решение x = 0 системы (1) называется эквиасимптотически устойчивым, если оно равномерно устойчивое и равномерно притягивающее.

Равномерная асимптотическая устойчивость

Тривиальное решение x = 0 системы (1) называется равномерно асимптотически устойчивым, если оно устойчивое и эквипритягивающее.

Асимптотическая устойчивость в целом

Тривиальное решение x = 0 системы (1) называется асимптотически устойчивым в целом, если оно устойчивое и глобальнопритягивающее.

Равномерная асимптотическая устойчивость в целом

Тривиальное решение x = 0 системы (1) называется равномерно асимптотически устойчивым в целом, если оно равномерно устойчивое и равномерно- и глобальнопритягивающее.

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home