Законы Кеплера

Еще в начале XVII века (то есть до открытия Ньютоном закона всемирного тяготения) немецкий астроном Иоганн Кеплер впервые решился пересмотреть причины движения планет вокруг Солнца, Луны вокруг Земли. Он ошибался в оценке природы притягивающей силы, но догадывался, что Солнце искажает притяжением пути планет, которые стремятся двигаться по прямой. Кеплер на основе результатов кропотливых и многолетних наблюдений Тихо Браге за планетой Марс смог определить форму его орбиты и вывести три закона движения планет. Открытие этих законов явилось важнейшим этапом в развитии гелиоцентризма.

Позднее, после открытия Ньютоном закона всемирного тяготения, законы Кеплера были выведены как точное решение задачи двух тел.

Содержание

1-й закон Кеплера (Закон эллипсов)

Каждая планета Солнечной системы обращается по эллипсy, в одном из фокусов которого находится Солнце.

Форму эллипса степень его сходства с окружностью будет тогда характеризовать отношение: e=\frac{c}{a}, где c - расстояние от центра эллипса до его фокуса; a - большая полуось. Величина e называется эксцентриситетом эллипса. При c = 0 и e = 0 эллипс превращается в окружность.

2-й закон Кеплера (Закон площадей)

Каждая планета движется в плоскости, проходящей через центр Солнца, причём площадь сектора орбиты, описанная радиусом-вектором планеты, изменяется пропорционально времени.

Применительно к нашей Солнечной системе, с этим законом связаны два понятия: перигелий - ближайшая к Солнцу точка орбиты, и афелий - наиболее удалённая точка орбиты. Тогда можно утверждать, что планета движется вокруг Солнца неравномерно: имея линейную скорость в перигелие больше, чем в афелие.

Каждый год в начале января Земля, проходя через перигелий, движется быстрее; поэтому видимое перемещение Солнца по эклиптике к востоку также происходит быстрее, чем в среднем за год. В начале июля Земля, проходя афелий, движется медленнее, поэтому и перемещение Солнца по эклиптике замедляется. Закон площадей указывает, что сила, управляющая орбитальным движением планет, направлена к Солнцу.

3-й закон Кеплера (Гармонический закон)

Квадраты периодов обращения планет вокруг Солнца относятся, как кубы больших полуосей орбит планет.

\frac{T_1^2}{T_2^2} = \frac{a_1^3}{a_2^3}, где T1 и T2 — периоды обращения двух планет вокруг Солнца, а a1 и a2 — длины больших полуосей их орбит.

Ньютон установил, что гравитационное притяжение планеты определенной массы зависит только от расстояния до неё, а не от других свойств, таких, как состав или температура. Он показал также, что третий закон Кеплера не совсем точен; что в действительности в него входит и масса планеты: \frac{T_1^2(M+m_1)}{T_2^2(M+m_2)} = \frac{a_1^3}{a_2^3}, где M – масса Солнца, а m1 и m2 – массы планет.

Поскольку движение и масса оказались связаны, эту комбинацию гармонического закона Кеплера и закона тяготения Ньютона используют для определения массы планет и спутников, если известны их расстояния и орбитальные периоды.

См. также

Небесная механика

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home